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SUMMARY

We propose and illustrate a novel type of shoreline boundary conditions for Boussinesq-type models. On
the basis of characteristic equations of the non-linear shallow water equations, boundary conditions are
developed equations that can suitably model the motion of the instantaneous shoreline. Such boundary
conditions are then implemented in a numerical solver for a specific set of Boussinesq-type equations,
which have been proved very effective for near-shore modelling. Finally, a number of tests are performed
to validate and illustrate the behaviour of the new conditions. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The most favoured approximate model equations for studying near-shore hydrodynamics are
both the classic non-linear shallow water equations (NSWEs) and the many available Boussi-
nesq-type equations (BTEs), which all stem from the work of Peregrine [1].

BTEs became very popular when it was proved they could model fairly well breaking waves
[2,3]. Subsequently, in order to make such equations more suitable for coastal engineering
practice, dispersive characteristics were greatly improved extending their seaward limit to reach
the so-called ‘intermediate depths’ (see [4] and references therein).

Notwithstanding these important improvements, which recently made BTE models ‘the
models’ for coastal engineering, flow solvers based on those equations suffer a major problem.
This is related to the mathematical/numerical treatment of both the swash motions and the
delicate shoreline boundary conditions [5].

To our knowledge no available solver based on BTEs correctly models the shoreline motions
and often ad hoc artificial techniques are used to model wave run-up and run-down (see for
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example the ‘slot technique’ used by Madsen et al. [6]). The quest for good shoreline boundary
conditions (SBCs) to be implemented in a BTE model is currently being pushed in a number
of different directions. Recently new SBCs are being developed [7] with the use of co-ordinate
transformations, which map the irregular shoreline to a straight line. Although a few examples
are given that testify good performances, some doubts can be reasonably raised on the
effectiveness of such techniques in the case of heavily breaking waves, which require strongly
distorted transformations. This is more true for breaking waves which interact in the swash
zone (e.g. backwash bores) as they generate cusp-like indentations at the shoreline which seem
hardly representable by a smooth co-ordinate transformation. No artificial techniques are
required when using the NSWEs as model equations. NSWEs are typically solved by means of
the method of characteristics and the shoreline is a characteristic itself!

It is now becoming clear that better modelling is required of the SBCs employed in BTE
models. To this purpose a number of methods can be applied, a short list of which is given
here as reference.

1.1. BTE-NSWE matching

This method, currently applied by some researchers, does not directly address the real
problems concerning the definition of suitable SBCs. Rather, a pragmatic view is taken
according to which purely dispersive BTEs (i.e. with no extra non-linear contributions) reduce
to NSWEs in very shallow waters. Consequently, a matching is imposed (depending on the
local Ursell number) between BTE and NSWE solvers [8]. With this technique swash zone
motions are always modelled by the NSWE module, which properly handles the motion of the
shoreline.

1.2. Extension of the NSWE to include dispersion

This is based on the view that NSWEs are most suitable for modelling the swash zone motions
and track the shoreline positions. In order to extend the range of validity of the NSWE to the
‘intermediate depths’ suitable non-linear-dispersive contributions can be included either into
the flux term Fx or into the source term S of the model equations

Ut+Fx=S (1.1)

used to cast the 1DH-NSWE in a typical conservation form to be solved for the variable U [9].

1.3. Characteristic-type SBCs for BTEs

A third approach is here followed, which is believed to both provide a close description of
what actually happens at the point (line) where the water meets the beach face and to be easily
implemented in any type of numerical models based on BTEs. Analysis is underway to define
the most suitable form of the SBCs for 1DH flow propagation [10]

dxs

dt
=us, ds=0 (1.2)
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with xs being the shoreline position, ds and us the water depth and the flow speed at the shore
respectively.

A theoretical analysis of the general technique which can be used to define SBCs for BTE
models on the basis of characteristic equations is given in Section 2. Section 3 briefly illustrates
the specific BTE model in which the new SBCs described in Section 4 are implemented. In
Section 5 a few examples are reported which illustrate the performances of the new SBCs and
their implementation. Some concluding remarks are given in the final Section 6 along with a
short description of ongoing research.

2. SBCs BASED ON CHARACTERISTIC EQUATIONS

First of all it is necessary to recognize that for small enough water depth most dispersive-non-
linear terms D, which characterize BTEs from NSWEs become negligible. Hence, near the
shoreline we can write the 1DH version of any BTE as

dt+ (ud)x=0 (2.3a)

ut+uux+gdx=ghx−�b+D (2.3b)

where d=h+� (see Figure 1) is the total water depth, u is a depth-averaged velocity, �b is the
seabed friction and subscripts are used to represent partial derivatives.

These can be cast in suitable conservative vectorial form, which is typically used in
shock-capturing numerical solvers

Ut+F(U)x=S(U) (2.4)

U being the vector of the unknowns, F the flux term and S the source term

Figure 1. Sketch of typical problem geometry.
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U=
� d

ud
n

, F(U)=

�
�
�
�
�

ud

u2d+
gd2

2

�
�
�
�
�

, S(U)=
� 0

gdhx−d�b+dD
n

(2.5)

which also includes all dispersive-non-linear contributions D which characterize each specific
BTE.

It is useful to introduce a Riemann problem defined by Equations (2.4) and (2.5) and
constant initial conditions such that

U(x, 0)=U0(x)=
�UL if x�0

UR if x�0
(2.6)

The Riemann problem helps to formulate and solve the transition which occurs at the
shoreline from a left (constant) wet state and a right (constant) dry state (see Figure 2), a
similar description was given by Stoker [11] of the ‘retreating piston’ or ‘retreating wave
paddle’ problem. We call the specific Riemann problem of Figure 2(b) as the ‘shoreline
Riemann problem’.

Solution to this typical hyperbolic problem is given in terms of two wave families which are
here called C+ and C− (Figure 3 represents the solution structure for the problem of Figure
2(b)). In very shallow water the characteristic curves C− and C+ of (2.4) are

dx
dt

=�1=u−c (C−),
dx
dt

=�2=u+c (C+) (2.7)

where c=�gd. These curves meet at the shoreline which can be considered as a C−-type
characteristic such that

Figure 2. The Riemann problem. Illustration of the initial data for: (a) a generic Riemann problem, (b)
the ‘shoreline Riemann problem’.
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Figure 3. C+ and C− characteristic patterns used to solve the Riemann problem at the shoreline: (a)
subcritical flow, (b) supercritical flow.

dx
dt

=�1s
=us−cs (C−) (2.8)

see, for example, the detailed description in [9].
Finally, the (x, t)-plane is subdivided into three regions that characterize the solution of the

shoreline Riemann problem: region II is made of an expansion fan of C−-type characteristics
connecting conditions of regions I of left constant conditions UL= (dL, uL, dL) with the dry
conditions UR= (dR, uR, dR)= (0, 0) of region III.

Notice that along the C− and C+ characteristics Riemann variables (R1, R2)= (u−2c, u+
2c) are not conserved (as in the case of inviscid NSWEs) because of the presence of non-zero
source terms which also include dispersive-non-linear contributions. On the contrary the
following is valid:

dR1

dt
=S along C−,

dR2

dt
=S along C+ (2.9)

where S=S2/d=ghx−�b+D.
It is, finally, essential to notice that SBCs are only a simplified version of

dxs

dt
=us or xs=

�
us dt (2.10a)

ds=0 (2.10b)

and the purpose of any analyses dealing with SBCs is to suitably define us which appears in
(2.10a) by obeying the constraint (2.10b).

Following Brocchini et al. [9] we compute us using conditions (2.9) in which ds=0 � cs=
�gds=0 is used on the C− characteristic which represents the shoreline
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dR1

dt
=S along

dxs

dt
=us (2.11a)

dR2

dt
=S along

dxs

dt
=uL+cL (2.11b)

Integration of these gives

R1(t+�t)=R1(t)+
� t+�t

t

S dt along
dxs

dt
=us (2.12a)

R2(t+�t)=R2(t)+
� t+�t

t

S dt along
dxs

dt
=uL+cL (2.12b)

where in this case [R1(t), R2(t)]= [us−2cs, uL+2cL]= [us, uL+2cL].
Substitution into Equation (2.12) and knowledge of the integration path gives

R1(t+�t)=us(t)+
� (x+�x)/us

x/u s

S

us

dx (2.13a)

R2(t+�t)=uL(t)+2cL(t)+
� (x+�x)/(uL+cL)

x/(u L+c L)

S

uL+cL dx (2.13b)

Notice that particular attention should be taken to evaluate integral contributions for small
velocity values. At the shoreline this only occurs at the maximum run-up and run-down
locations.

At the shoreline the above conditions are simultaneously valid (see Figure 3) hence giving
the final result

us(t)=uL(t)+2cL(t)+
� (x+�x)/(uL+cL)

x/(u L+c L)

S

uL+cL dx−
� (x+�x)/us

x/u s

S

us

dx (2.14)

which replaces the condition

us(t+�t)=uL(t)+2cL(t) (2.15)

valid for NSWEs.
In the case of inviscid BTEs (i.e. with no seabed friction included) with purely dispersive

extra contributions, D�0 in very shallow depths and the source term reduces to the
acceleration due to the beach slope. Therefore (2.15) can suitably be used to evolve the
shoreline position xs in time through (2.10a) if either a splitting technique is used for such term
Brocchini et al. [9] or the co-ordinate transformation by Watson et al. [12] is adopted. On the
other hand, if D also contains non-linear-dispersive terms (a non-singular expansion in the
non-linearity parameter must always be required) Equation (2.14) replaces (2.15).
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3. THE SPECIFIC BTE

This section is dedicated to a brief description of the specific BTE model on which charac-
teristic-type SBCs have been implemented. We have chosen to adopt and code this specific
model described in length in [13,14], because of its effectiveness in representing near-shore
flows.

3.1. The equations

The basic model equations are both the mass conservation equation

�t+ [(h+�)ux ]=0 (3.16)

and the momentum conservation equation

ut+uux+g�x+
�

B−
1
3
�

h2uxxt−
1
2

hhxxut−hhxuxt+Bgh2�xxx−
1
3

h2uuxxx+
1
3

h2uxuxx

−
3
2

hhxxuux−
1
2

hhxxxu2−hhxuuxx+Bh2(uux)xx−
1
3

h�uxuxx

−
1
3

huxx(�u)x+h(�ux
2)x−

2
3

h(�uuxx)x−�xhxxu2−�hxuuxx−
1
2

�hxxxu2−
3
2

�hxxuux

−�xhxuux−
1
3

�2uuxxx−��xuuxx+��xux
2 +

1
3

�2uxuxx−h�xutx

−
2
3

h�(ut)xx+�hx(ut)x−hx�xut−
1
2

�hxxut+
1
6

�2(ut)xx−
1
2

(�2(ut)x)x=0 (3.17)

with improved dispersion characteristics (here B= − 1
15). Good dispersion properties, which

make this model suitable for accurate flow predictions from the ‘intermediate’ to the
‘shallow waters’ have been obtained by retaining terms of order up to O(�3�2) inclusive
(�=k0h0 and �=a/h0 are the parameters which measure dispersion and non-linearity re-
spectively and are built with k0=characteristic wave number, h0=characteristic depth and
a=characteristic wave amplitude).

Notice that, although the original form of Equation (3.17) includes additional terms
which model energy dissipations caused by wave breaking, these are here neglected as our
present purpose is to investigate shoaling and run-up of non-breaking waves. They will be
re-introduced when modelling wave dynamics in the surf and swash zones. A second note
of caution concerns the non-uniform validity of the expansion used to obtain (3.17). It is
evident that the highest non-linear-dispersive terms of O(�3�2), which are important to
adequately model non-linearities in the outer and inner surf zone, are singular for h�0.
Hence, they are not included in any analysis of swash motions.
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3.2. The numerical model

The governing Equations (3.16) and (3.17) are solved using a numerical model based on a
fourth-order Adam–Bashfort–Moulton (ABM) time-stepping scheme. This scheme, which is
rather effective for BTEs [15], is also numerically efficient and easy to code. Suitable finite
differences schemes are employed in order to obtain accurate estimates of spatial derivatives.

The independent variables x and t are discretized on the unstaggered grid by defining
xi= (i−1)�x, (i=1, 2, . . . , Ntot−1, Ntot) and tn= (n−1)�t, (n=1, 2, . . . , T−1, T), where
Ntot is the number of nodes of the computational domain in the x-direction and T is the
number of time-steps. Since the numerical model should be able to simulate a moving
shoreline, the computational domain is divided into two regions respectively a wet region
(nodes from 1 to N) and a dry region (nodes from N+1 to Ntot) as depicted in Figure 4. The
governing equations are solved only in the wet zone, and the abscissa x of the last wet node
N represents the shoreline position. The value of N varies throughout the simulation depending
on flow conditions as illustrated in detail in Section 4.

In order to apply the ABM scheme the governing equations are written in a more convenient
way

�t=E (3.18)

ũt=F (3.19)

where

ũ=u+
��

B−
1
3
�

h2uxx−
1
2

hhxxu−hhxux
n

(3.20)

E= − [(h+�)u ]x (3.21)

Figure 4. The computational domain.
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and

F= −uux−g�x−Bgh2�xxx+
1
3

h2uuxxx−
1
3

h2uxuxx+
3
2

hhxxuux+
1
2

hhxxxu2+hhxuuxx

−Bh2(uux)xx+
1
3

h�uxuxx+
1
3

huxx(�u)x−h(�ux
2)x+

2
3

h(�uuxx)x+�xhxxu2+�hxuuxx

+
1
2

�hxxxu2+
3
2

�hxxuux+�xhxuux+
1
3

�2uuxxx+��xuuxx−��xux
2 −

1
3

�2uxuxx+h�xutx

+
2
3

h�(ut)xx−�hx(ut)x+hx�xut+
1
2

�hxxut−
1
6

�2(ut)xx+
1
2

(�2(ut)x)x (3.22)

If initial conditions are specified, i.e. if the values of � and u at the time levels, n, n−1, n−2
are available, the solution at the subsequent time level n+1 can be obtained by means of the
following procedure:

1. evaluation of right-hand sides of Equations (3.18) and (3.19) at time level n, n−1, n−2;
2. integration in time of Equations (3.18) and (3.19) by means of the predictor stage of the

ABM scheme;
3. evaluation of u from ũ ;
4. evaluation of right-hand sides of Equations (3.18) and (3.19) at time level n+1;
5. integration in time of Equations (3.18) and (3.19) by means of the corrector stage of the

ABM scheme;
6. evaluation of u from ũ.

Steps 4–6 are iterated until convergence is reached.
In the following subsections the basic steps of the solution process are briefly described.

3.2.1. E�aluation of right-hand sides of Equations (3.18) and (3.19). The quantities E and F are
function of �, u and of the spatial and time derivatives of such dependent variables.

For what concerns time derivatives, expressions consistent with the accuracy of the ABM
scheme are adopted. As time derivatives depend on the future value of both � and u the value
of F has to be computed anew at each iteration.

The spatial derivatives are computed by means of high-order finite difference scheme in
order to obtain estimates with truncation errors lower than the highest-order dispersive terms
in the governing equations. In the interior region of the domain central schemes can be applied
while one-sided schemes are used to evaluate derivatives at the boundaries.

3.2.2. Integration in time of go�erning equations. Once right-hand sides of Equations (3.18) and
(3.19) are computed estimates of quantities � and ũ at the following time-step n+1 can be
obtained by applying the ABM scheme which at the predictor stage reads

� i
n+1=� i

n+
�t
12

[23Ei
n−16Ei

n−1+5Ei
n−2] (3.23)
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u� i
n+1= ũ i

n+
�t
12

[23Fi
n−16Fi

n−1+5Fi
n−2] (3.24)

Once � i
n+1 and ũ i

n+1 are estimated, the quantities E and F can be evaluated at the time-step
n+1 and the corrector ABM expressions can be applied

� i
n+1=� i

n+
�t
24

[9Ei
n+1+19Ei

n−5Ei
n−1+Ei

n−2] (3.25)

ũ i
n+1= ũ i

n+
�t
24

[9Fi
n+1+19Fi

n−5Fi
n−1+Fi

n−2] (3.26)

The predictor–corrector scheme is applied to evaluate � i
n+1 for i=1, 2, . . . , N−1, N and

ũ i
n+1 for i=2, 3, . . . , N−2, N−1, where N is, as stated before, the total number of wet nodes

in the computational domain.
The depth-averaged velocity u can be obtained from ũ, when suitable boundary conditions

are prescribed, solving a tridiagonal system by means of the technique described below.

3.3. E�aluation of u from ũ

Once the ũ i
n+1 values are determined in all interior grid nodes (i=2, 3, . . . , N−2, N−1), a

technique to solve the ordinary differential Equation (3.20) is needed to compute water
velocity u. Equation (3.20) can be discretized using a three-point finite difference scheme for
the second derivative of u and a simple two-point central finite difference scheme for the first
derivatives to give

ũ i
n+1=Ai−1ui−1

n+1+Biui
n+1+Ci+1ui+1

n+1 for i=2, 3, . . . , N−2, N−1 (3.27)

These N−2 equations form a tridiagonal system that can be efficiently solved to obtain
ui

n+1 at all interior grid points if u1
n+1 and uN

n+1 are specified.
It is stressed that the velocity at the boundaries at the time step u1

n+1 and uN
n+1 are requested

by the numerical schemes as boundary conditions.

4. IMPLEMENTATION OF CHARACTERISTIC TYPE SBCS

In Section 2 the fluid velocity u s
n+1 at the interface between wet and dry states was obtained

by solving the ‘shoreline Riemann problem’. Now, in order to employ this solution as a
boundary condition for the BTE model, some questions should be answered. First, where is the
shoreline? Second, what is the difference (if any) between u s

n+1 and uN
n+1? Third, how uN

n+1 can
be evaluated from u s

n+1?
Since the governing equations are discretized on a fixed spatial grid only an approximate

answer can be given to the first question: the shoreline is somewhere between the last wet node
N and the first dry node N+1. By changing the value of N, i.e. inundating and draining
the nodes in the swash zone, shoreline movements can be tracked, but only a discrete
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representation of the shoreline position can be obtained by the model at hand. In the following
it is assumed that the shoreline is exactly in the middle of the region [xN, xN+1], i.e.
xs=xN+�x/2. This assumption can easily be substituted by an interpolation procedure;
which, however, would not alter the essence of the method. A technique to change the value
of N when flow conditions require it is described in the following.

For what concerns the second question we can affirm that by assuming uN
n+1=us

n+1

unrealistic and numerically unstable solutions are obtained by the BTE model. The reason is
that us is the velocity of the fluid at a specific point (the shoreline) of the computational
domain, while uN

n+1 should be representative of flow conditions in the region

�
xN−

�x
2

, xN+
�x
2
n

A numerical technique to evaluate uN
n+1 from us

n+1 is therefore needed. The basic assumption
we start from is that u and � are piecewise constant over the three regions

�
xi−

�x
2

, xi+
�x
2
n

i=N−1, N, N+1, hereinafter referred to as ‘computational cells’. The quantities uN−1
n , uN

n

and uN+1
n can therefore be viewed as integral averages of the solution u(x)n, namely

ui
n=

1
�x

� xi+1/2

xi−1/2

u(x)n dx (4.28)

Now a suitable numerical method is to be chosen in order to evaluate uN
n+1 starting from

piece-wise constant initial conditions as depicted in Figure 6. It is necessary that the method
can adequately deal with solution discontinuities (between cells N−1 and N) and treat the
wet–dry interface between cells N and N+1 by taking the most from the accurate analysis
performed in Section 2. Brocchini et al. [9] showed that a NSWE near-shore flow solver based
on the weighted averaged flux (WAF) method can accurately simulate swash zone flows and
shoreline motions. The WAF method is therefore adopted in the present study as the
numerical tool to evaluate uN

n+1, i.e. the boundary condition of the BTE model. It is stressed
that this method is here merely used to convert the ‘real’ velocity value us into the ‘numerical’
value uN

n+1.

4.1. A WAF technique to mo�e the shoreline

The WAF method [16,17] is used to solve the conservative form of the NSWE. First,
concentrate on the homogenous form of Equations (2.4), which is identical to the NSWE
homogeneous problem for horizontal bottom.

Ut+F(U)x=0 (4.29)
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These equations can be integrated in a rectangular region of the x− t space (see Figure 5) in
order to obtain a weak form. Using Green’s theorem

�
[U dx−F(U) dt ]=0 (4.30)

These equations can be solved on a staggered grid as depicted in Figure 5 if written in the
following discrete form and for i=N

UkN

n+1=UkN

n +
�t
�x

[FkN−1/2

n+1/2 −FkN+1/2

n+1/2 ], k=1, 2 (4.31)

where FkN−1/2

n+1/2 and FkN+1/2

n+1/2 are the intercell fluxes at the time level n+1
2.

Several methods are available to estimate intercell fluxes FkN−1/2

n+1/2 , k=1, 2. Most of these
solve the sub-grid initial value Riemann problem by means of exact or approximate tech-
niques. Exact techniques provide an accurate solution of the initial value problem, but require
more computational time than the approximate ones since an implicit equation is to be solved
by iterations.

The Riemann problem at the interface between cells N−1 and N can be formulated as

Ut+F(U)x=0, U(x, t0)=U0(x)=
�UN−1 if x�xN−�x/2

UN if x�xN−�x/2
(4.32)

The structure of the solution in the x− t plane is shown in Figure 6. It consists of two wave
families, each of these emanating from the interface with propagation speed �. The value of U*
in the region between the waves is computed here by means of an exact Riemann solver.
Notice that the two wave families can be either rarefaction or shock waves, depending on the

Figure 5. Variables representation on a discretized domain: (a) anticlockwise integration of (4.30) on a
discretized x− t space, (b) discrete solution behaviour.
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Figure 6. Example of solution of the ‘shoreline Riemann problem’ in the case of left rarefaction fan and
a right shock wave.

initial values of the problem. In Figure 6 an example of a left rarefaction and a right shock is
shown.

Once the Riemann problem is solved, fluxes in each region bounded by the waves can be
computed. The value of the intermediate flux FkN−1/2

n+1/2 , k=1, 2 can be estimated by the
weighted average of the fluxes over the region [xN, xN+1] at the time level n+1/2.

At the interface between cells N and N+1 the Riemann problem reads

Ut+F(U)x=0, U(x, t0)=U0(x)=
� UN if x�xN+�x/2

UN+1=0 if x�xN+�x/2
(4.33)

The solution to this problem, already introduced in section 4, is known as Ritter’s solution
[11]; this consists of a rarefaction wave emanating from the interface (i.e. the shoreline at time
level n) propagating with speed (�1, �s)= (uN−cN, us), where �1 and �s are respectively the
speed of the tail and head waves of the fan. In the region between the tail and the head of the
rarefaction fan a quadratic dependence of the water depth on x and a linear dependence of the
velocity on x is obtained by Ritter’s solution. Particular care is required in evaluating the
weighted averaged flux in this limit region. The final expression for FkN+1/2

n+1/2 , k=1, 2 adopted
in the present study reads
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FkN+1/2

n+1/2 =
1

�x
��

�l

�t
2

+
�x
2
�

Fk(dL, uL)+ (�l−�s)
�t
2

Fk(dL, uL, d� , ũ, us)
n

(4.34)

where d� =dL/2, ũ= (uL+us)/2 and

Fk(dL, uL, d� , ũ, us)=
1
4

Fk(dL, uL)+
1
2

Fk(d� , ũ)+
1
4

Fk(0, us) (4.35)

is the contribution from the region in the rarefaction fan computed by means of the
trapezoidal rule.

uN
n+1 can be obtained by time-stepping the solution applying Equation (4.31) once intercell

fluxes are computed. In order to solve Equations (2.4), which differ from (4.29) because of the
presence of the source terms, we follow the approach of Watson et al. [12]. These authors
proposed a technique based on the incorporation of the source terms into the Riemann
problem. The idea is to transform the problem into a reference frame with horizontal
acceleration equal to g�−D, where � is the bottom slope assumed to be constant in each cell
and D are the dispersive-non-linear terms. This transformation gives a set of homogenous
equations that can be solved as described before. Then, by means of a reverse transformation,
the solution is obtained in the original reference frame. Note, however, that D, unlike g�, is
not constant over each cell since its value depends on both the water depth and the velocity.
To overcome this undetermination, D is assumed to be constant over �t, given that this value
is computed at the beginning of the time step.

The new variables in the accelerating reference frame are

�=x+
1
2

(g�−D)t2, �= t

�=u+ (g�−D)t, �=d (4.36)

If these new variables are substituted into (2.4) a set of homogenous equations, formally
identical to (4.29) is obtained. Once the solution is found in the accelerating frame, the reverse
transformation yields the following relations between (4.36) and the original variables

u(x, t)=�
�

x+
1
2

(g�−D)t2, t
n

− (g�−D)t

d(x, t)=�
�

x+
1
2

(g�−D)t2, t
n

(4.37)

The structure of the solution of the Riemann problem in the case of a left rarefaction and
a right shock wave is shown in Figure 7. The solution in the accelerating (panel a) reference
frame is identical to the solution of Equations (4.29) while in the stationary frame (panel b) the
trajectory of each wave is no longer a straight line but turns into a parabola.
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Figure 7. Riemann problem solution in the accelerating (a) and in the stationary (b) reference frames.

From a practical point of view, in order to apply the WAF method, the quantity
1
2(g�−D)�t must be subtracted from all the velocities and, in evaluating the weights of each
flux, it is to be considered that the solution is shifted in x by a constant amount 1

2(g�−
D)(1

2�t)2.
Equation (4.31), modified to take into account source terms effects reads

UkN

n+1=UkN

n +
�t
�x

[FkN−1/2

n+1/2 −FkN+1/2

n+1/2 ]+SN
n+1/2�t, k=1, 2 (4.38)

where

S(U)=
� 0

−gd�+dD
n

(4.39)

[Notice that in the original work [12] because of a typographical error an incorrect expression
for S(U) is reported on Equation (19).]

Finally, the technique to change the value of N during the run-up phase is based on the
volume of fluid entering dry cell N+1 at each time step. An estimate of this volume can be
obtained by applying the WAF method to the cell N+1. The expression (4.38) reads in this
case

UkN+1

n+1 =
�t
�x

[FkN+1/2

n+1/2 ]+SN+1
n+1/2�t, k=1, 2 (4.40)

since UkN+1

n =0, k=1, 2 and FkN+1/2

n+1/2 =0, k=1, 2.
If dN+1

n+1 �x is greater than a threshold value the cell is inundated and at the following time
step the new value of N=N+1 is employed.

During the run-down phase a simpler technique provides good results. This is based on the
use of the water depth at node N : if dN

n+1 is lower than a threshold value at the following time
step the new value of N=N−1 is employed.
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Note that in this work run-up and run-down phases were defined on the basis of flow
direction at node N−1 at the time level n : uN−1

n �0 defines run-up, uN−1
n �0 run-down.

5. PERFORMANCE EVALUATION OF THE BTE MODEL WITH NEW SBCS

A number of tests are reported here to help the reader evaluate the performances of the
implementation of the SBCs of Section 4 in the BTE model described in Section 3.

Analytical solutions are the most suitable for evaluating the performances of the imple-
mented SBCs as they represent an exact benchmark. We consider here three important
analytical solutions for waves propagating over a uniform sloping beach. They respectively
model the run-up due to a depression of the water level (the fluid held motionless) which is
suddenly released (the ‘Carrier and Greenspan’s run-up solution’ [18]), the run-up and
run-down characteristic of a periodic wave travelling shoreward and being reflected out to
sea (the ‘Carrier and Greenspan’s standing wave solution’ [18]) and the run-up of a solitary
wave (the ‘Synolakis run-up solution’ [19]).

5.1. The Carrier and Greenspan run-up solution

This test corresponds to the physical in which the water level at the coastline of a plane
uniform beach is depressed, the fluid held motionless and then released. It also represents
the most classical test conditions for assessing the quality of any run-up solver.

Carrier and Greenspan [18] used a hodograph transformation to solve the NSWE and
obtained an analytical solution of this problem. The transformation makes use of two
dimensionless variables (hereinafter starred variables denote dimensionless quantities)
(	*, �*) which are respectively a space-like and a time-like co-ordinate. Dimensionless
ordinary variables and flow properties are then related to the hodograph co-ordinates as
follows:

x*=
1
4


*� −
1
16

	*2−
1
2

u*2, t*=
1
2

�*−u* (5.41a)

�*=
1
4


�*−
1
2

u*2, u*=
	** /	* (5.41b)

where 
* is a ‘potential function’ which depends on the specific propagation problem
under investigation.

The ‘run-up solution’ is specified by the following initial conditions at t*=0:

�*=�
�

1−
5
2

a3

(a2+	*2)3/2+
3
2

a5

(a2+	*2)5/2

n
(5.42a)

u*=0 (5.42b)
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Figure 8. The ‘Carrier and Greenspan run-up test’ on a uniform plane beach. Dimensionless, scaled,
analytical (dotted lines) and numerical (solid lines) profiles of water elevation �* are plotted versus the
dimensionless onshore co-ordinate x* at dimensionless times increasing of �t*=0.05 from t*=0.00

(bottom curves) to t*=0.80 (top curves).

x*= −
	*
16

+�
�

1−
5
2

a3

(a2+	*2)3/2+
3
2

a5

(a2+	*2)5/2

n
(5.42c)

where a=3/2(1+0.9�)1/2 and � is a non-linearity parameter.
Further details on both initial conditions and the analytical solution can be found in the

original work of Carrier and Greenspan.
In Figure 8, which is the equivalent of figure 7 of [18], the analytical solution �*/� versus the

onshore co-ordinate x* is shown by means of dotted lines for different adimensional times. On
the other hand, solid lines pertain to the numerical results while the thicker line represents the
sloping seabed. It is evident that an excellent matching exists between the analytical and the
numerical solution. It is also worth underlining that no spurious oscillations are present near
the shoreline. Any oscillatory behaviours would reveal two possible sources of errors:

� a bad implementation of the SBCs in the chosen BTE model;
� a bad implementation of the ‘wetting–drying’ procedure.

On the contrary, the smooth behaviour of the elevation profiles of Figure 8 testifies to the
absence of such problems.
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5.2. The Carrier and Greenspan standing wa�e solution

This solution of the NSWEs represents the motion of a wave of dimensionless amplitude A*
and dimensionless frequency * travelling shoreward and being reflected out to sea generating
a standing wave [18]. In the past it has been widely used to analyse the dynamics of water
waves approaching a coast or a continental shelf [20,21].

Such a solution can be specified by means of the following potential function


*(	*, �*)=A*J0(*	*) cos(*�*) (5.43)

where J0 is the Bessel function of the first kind.
Once (5.43) is substituted into (5.41) a solution can be found for all the flow properties of

interest in the ordinary (x*, t*)-space. Such a solution has been obtained both analytically and
numerically for the case A*=0.6 =1 (non-breaking wave).

In Figure 9 both profiles of the numerically-computed free surface elevation and the
envelope of the analytically-derived surface elevations are reported. The figure reveals an

Figure 9. The ‘Carrier and Greenspan standing wave test’ on a uniform plane beach: envelope of surface
elevations. Envelope of the dimensionless, analytical solution by Carrier and Greenspan (dotted lines)
and numerical (solid lines) profiles of water elevation �* are plotted versus the dimensionless onshore

co-ordinate x*.
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Figure 10. The ‘Carrier and Greenspan standing wave test’ on a uniform plane beach: horizontal motion
of the shoreline. Incident wave of dimensionless amplitude A*=0.6 and dimensionless frequency *=1.
Dimensionless analytical shoreline path as from [18] (dotted line) and numerical shoreline path (solid line)

in time.

almost perfect agreement between analytical and numerical solutions. Again, the absence of
any oscillations in the numerical solution is particularly satisfying.

The comparison can also be pushed forward to analyse any possible differences in the
horizontal motion of the shoreline. This is reported in Figure 10 in which a dotted line is used
to represent the analytical solution while the solid line gives the numerical shoreline. Apart
from a very small underestimation at the peak of the run-up (which could be fixed by
increasing the spatial discretization) the numerical solution perfectly matches the analytical
one. This does not happen when employing artificial techniques like the slot-technique [6],
which always introduce a loss of mass (revealed by a reduced swash amplitude). The agreement
is even more remarkable in view of the structure of the proposed SBCs which do not depend
on any calibration parameters.

5.3. The Synolakis run-up solution

Synolakis’ [19] solution is one of the very few available analytical solutions for the run-up of
a solitary wave (a similar solution is also available for the interactions of solitary waves in
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shallow waters [22]). Such an equation has been obtained in the framework of the NSWE but
has been shown to model very well beach inundation conditions caused by solitary waves.

In Synolakis’ solution a solitary wave of dimensionless height H* centred at a distance X1*
from the shore at time t*=0

�*=
H*
d*

sech2[�(x*−X1*)], where �=�3H*/4d* (5.44)

is propagated over a combined topography made of a plateau of depth d* and a plane sloping
beach of slope � ; matching of the two regions occurs at x*=X0*=cot � (see Figure 11).

Propagation of the above signal by means of the NSWEs is more easily modelled if Carrier
and Greenspan’s [18] hodograph transformation and a Fourier transform technique are used
in combination. This brings to the following definition for 
*


*(	*, �*)= −
32i
3
��

−�

cosech(�k*)
J0(k*	*X*0/2) eik*�

J0(2k*X*0)− iJ1(2k*X*0)
dk* (5.45)

where �=�/2� and �=X1*−X0*+�*X0*/2 is the pulse phase.
We refer the reader to [19] for a detailed description of the solution.
We used such a solution to illustrate the model performances to reproduce the run-up of a

solitary wave. More specifically we have tried to reproduce Synolakis’ results given in his
figure 6. This summarizes the comparison of the analytical solution and experimental data in
the case of solitary wave of H*/d*=0.019 climbing up a 1:19.85 beach. Cross-shore profiles
of the free surface elevation at different stages of the run-up process are reported in Figure 12.
Notice that instead of centring the initial wave profile at X1*=37.35 we used X1*=40. This
only introduces a small shift in the origin of the times.

Figure 11. Definition sketch for the initial condition of Synolakis’ run-up solution.
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Figure 12. The ‘Synolakis run-up solution’. Dimensionless free surface elevation �* as function of the
dimensionless x* co-ordinate at different adimensional times t*=20, 30, 35, 40, 45, 50 (from left to right
and from top to bottom). The solid line represents computed data while solid circles are used for

Synolakis’ analytical solution.

A very good matching exists between the numerical solution provided by the BTE model
(solid lines) and Synolakis’ analytical solution (dotted lines). The matching is almost perfect
during most of the run-up. However, when the wave is just to reach the maximum run-up
small discrepancies can be found far from the shore (i.e. x*�10). This discrepancy can be
ascribed to the fact that being obtained within the NSWE framework Synolakis’ solution best
represents flow conditions near the shoreline.

However, near the shoreline (i.e. for x*�4) matching of the two solutions is always
excellent, again suggesting a good implementation of the SBCs in the chosen BTE model.
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6. CONCLUSIONS

A novel type of SBC has been proposed for Boussinesq-type models. This is derived by using
the characteristic form of the NSWE and is shown to properly model the shoreline motion.
The methodology used to implement such SBCs in a specific BTE model is illustrated and its
effectiveness verified by means of three different analytical solutions. The illustrated model
represents an efficient tool for modelling nearshore flows and analysis is underway to compare
it with a shock-capturing version of the same BTE model in which non-linear-dispersive terms
are regarded as forcings of the classical NSWEs.
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